首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   36215篇
  免费   3184篇
  国内免费   1394篇
电工技术   885篇
综合类   2431篇
化学工业   10187篇
金属工艺   4892篇
机械仪表   1277篇
建筑科学   1763篇
矿业工程   2006篇
能源动力   1266篇
轻工业   2552篇
水利工程   596篇
石油天然气   1370篇
武器工业   240篇
无线电   1223篇
一般工业技术   4822篇
冶金工业   3783篇
原子能技术   331篇
自动化技术   1169篇
  2024年   78篇
  2023年   498篇
  2022年   854篇
  2021年   965篇
  2020年   1108篇
  2019年   941篇
  2018年   892篇
  2017年   1007篇
  2016年   1038篇
  2015年   1132篇
  2014年   1788篇
  2013年   1800篇
  2012年   2323篇
  2011年   2534篇
  2010年   1905篇
  2009年   2048篇
  2008年   1692篇
  2007年   2542篇
  2006年   2450篇
  2005年   2150篇
  2004年   1878篇
  2003年   1704篇
  2002年   1471篇
  2001年   1163篇
  2000年   972篇
  1999年   768篇
  1998年   594篇
  1997年   460篇
  1996年   401篇
  1995年   326篇
  1994年   268篇
  1993年   181篇
  1992年   191篇
  1991年   139篇
  1990年   112篇
  1989年   101篇
  1988年   56篇
  1987年   42篇
  1986年   32篇
  1985年   33篇
  1984年   41篇
  1983年   22篇
  1982年   30篇
  1981年   12篇
  1980年   7篇
  1979年   7篇
  1976年   6篇
  1975年   5篇
  1971年   3篇
  1951年   6篇
排序方式: 共有10000条查询结果,搜索用时 17 毫秒
81.
The synthesis of large‐area TiS2 thin films is reported at temperatures as low as 500 °C using a scalable two‐step method of metal film deposition followed by sulfurization in an H2S gas furnace. It is demonstrated that the lowest‐achievable sulfurization temperature depends strongly on the oxygen background during sulfurization. This dependence arises because Ti? O bonds present a substantial kinetic and thermodynamic barrier to TiS2 formation. Lowering the sulfurization temperature is important to make smooth films, and to enable integration of TiS2 and related transition metal dichalcogenides—including metastable phases and alloys—into device technology.  相似文献   
82.
研究了退火和固溶时效处理对热轧态TC4钛合金的力学性能和组织的影响,并考察了其冲击磨损性能。结果表明:退火处理后试样组织中转变β相增加,强度、塑性和韧性均较热轧态有所提升;而固溶时效处理后试样组织的晶粒细化且尺寸更为均匀,同时具有最高的强度,而塑性和韧性则较热轧态有所降低。经过10 h的冲击磨损试验后,退火态试样的磨损率最低,而固溶时效态试样的磨损率最高。通过磨损断口观察发现退火态试样表面冲刷犁沟较短,且终点处存在合金的塑性堆积,同时磨损面组织发生塑性变形,晶粒延展拉长。退火态试样较高的塑性和韧性有助于吸收冲击能量,因此表现出较好的耐冲击磨损性能。  相似文献   
83.
随着新型材料冶金技术的发展与进步,钛合金作为“崛起的第三代金属”已完全替代了铝镁合金和钢构件,成为航天飞行器上应用范围最广的材料之一。从某新研制航天飞行器外部结构件用钛合金材料的特性及切削特点入手,针对薄壁弱刚性钛合金结构件在实际加工过程中遇到的诸多难点,提出了相应的解决办法,并重新设计了零件工装。结果表明,改进措施不仅保证了零件质量,而且提高了零件加工效率,使单件零件的生产周期缩短了近10h。  相似文献   
84.
《Ceramics International》2021,47(20):28357-28366
Lithium titanium oxide (Li2TiO3) tritium breeder ceramic plates with nano- and coarse-grain size were fabricated. The preparation methods contained CTAB-modifying precursor, combining dry-pressing with isostatically cold-pressing, and calcinating at optimized sintering temperature in turn. Then their properties were characterized after radiation by 280 keV helium (He+) ion. Extensive characterization analyses were performed to reveal the changes in nano-grained and coarse-grained Li2TiO3 after radiation. They contained glancing angle X-ray diffraction (GIXRD), atomic force microscopy (AFM), electron spin resonance (ESR), and scanning electron microscopy (SEM). The results showed as follows, GIXRD peak position of the nano-grained Li2TiO3 was more stable than the coarse-grained Li2TiO3 after radiation. Nano-grained Li2TiO3 was less rough and swollen than the coarse-grained one after radiation. Nano-grained Li2TiO3 had more excellent structural stability and less defect concentration of Eʹ-center after radiation. As a result, nano-grained Li2TiO3 might have much better radiation tolerance than the coarse-grained one by comparing characterization results.  相似文献   
85.
The realization of seawater electrolysis requires high-performing anode materials that should possess good catalytic activity, stability, and specificity for the oxygen evolution reaction (OER) as well as high resistance toward chloride corrosion. Herein, the design of a multilayered oxygen-evolution electrode is reported to meet the multiple needs of anode material for saline water splitting. The multilayered electrode is synthesized through direct thermal boronization of commercially available NiFe alloy plate with boron powder, followed by electrochemical oxidation. And this electrode is composed of the surface oxidized NiFeBx alloy layer, the NiFeBx alloy interlayer, and the NiFe alloy substrate. The boron species are present in the form of metaborate in the outermost oxidized NiFeBx layer, and their existence is conductive to the generation and stabilization of the catalytic active phase γ-(Ni,Fe)OOH. The introduction of NiFeBx interlayer effectively prevents the excessive oxidative corrosion of the anode material in the electrolyte containing chloride ions.  相似文献   
86.
This study describes the fabrication of ultrafast laser-induced periodic nanostructures on Nickel sheets and their use as cathodes in alkaline electrolysis. For the first time, to the best of our knowledge, laser-nanostructured Ni sheets were used as cathode electrodes in a custom-made electrolysis cell at actual, Hydrogen producing conditions, and their efficiency has been compared to the untreated Nickel sheets. The electrochemical evaluation showed higher Jpeaks, lower overpotential, and enhanced double-layer capacitance for the nanostructured electrode. A decrease in the Tafel slope was also found for the nanostructured electrode. The hydrogen production efficiency was found to be 3.7 times larger for the laser-nanostructured Nickel electrode, which was also confirmed by current-time measurements during electrolysis. Also, a novel approach is proposed to improve the stability of the current density during electrolysis and, therefore, the hydrogen production process by about 10%.  相似文献   
87.
Water electrolysis is a process that can produce hydrogen in a clean way when renewable energy sources are used. This allows managing large renewable surpluses and transferring this energy to other sectors, such as industry or transport. Among the electrolytic technologies to produce hydrogen, proton exchange membrane (PEM) electrolysis is a promising alternative. One of the main components of PEM electrolysis cells are the bipolar plates, which are machined with a series of flow distribution channels, largely responsible for their performance and durability. In this work, AISI 316L stainless steel bipolar plates have been built by additive manufacturing (AM), using laser powder bed fusion (PBF-L) technology. These bipolar plates were subjected to ex-situ corrosion tests and assembled in an electrolysis cell to evaluate the polarization curve. Furthermore, the obtained results were compared with bipolar plates manufactured by conventional machining processes (MEC). The obtained experimental results are very similar for both manufacturing methods. This demonstrates the viability of the PBF-L technology to produce metal bipolar plates for PEM electrolyzers and opens the possibilities to design new and more complex flow distribution channels and to test these designs in initial phases before scaling them to larger surfaces.  相似文献   
88.
Transition metal phosphides (TMPs) have been considered as cheap alternatives of precious metal platinum for electrochemical hydrogen evolution reaction (HER). In the past decades, many reports have indicated that the engineering of heterointerfaces between different components could efficiently enhance the activity of HER catalysts. Here, we report a facile method to construct Ni12P5–Ni2P heterostructure by using a low temperature phosphorization strategy. The obtained Ni12P5–Ni2P heterostructure shows high activity toward HER with an overpotential value of 166 mV at 10 mA cm?2 and a Tafel slope of 60 mV dec?1 in 0.5 M H2SO4. Compared with pure Ni2P and Ni12P5, the Ni12P5–Ni2P heterostructure has more active sites and faster HER kinetics due to the presence of the interfaces between Ni12P5 and Ni2P. Furthermore, we used the obtained Ni12P5–Ni2P as cathodic catalyst and IrO2/Ti as anodic material to set up a proton exchange membrane (PEM) electrolyzer which shows good stability after 120 h continuous constant current electrolysis at 200 mA cm?2. This work demonstrates the positive effect of heterostructure for HER catalysts and provides a feasible strategy for constructing earth-abundant electrocatalysts.  相似文献   
89.
Recognizing the potential role of liquid hydrogen carriers in overcoming the inherent limitations in transporting and storing gaseous and liquid hydrogen, a complete production and use scenario is postulated and analyzed for perspective one-way and two-way carriers. The carriers, methanol, ammonia and toluene/MCH (methylcyclohexane), are produced at commercially viable scales in a central location, transmitted by rail or pipelines for 2000 miles, and decomposed near city gates to generate fuel-cell quality hydrogen for distribution to refueling stations. In terms of the levelized cost of H2 distributed to the stations, methanol is less expensive to produce ($1.22/kg-H2) than MCH ($1.35/kg-H2) or ammonia ($2.20/kg-H2). Levelized train transmission cost is smaller for methanol ($0.63/kg-H2) than ammonia ($1.29/kg-H2) or toluene/MCH system ($2.07/kg-H2). Levelized decomposition cost is smaller for ammonia ($0.30–1.06/kg-H2) than MCH ($0.54–1.22/kg-H2) or methanol ($0.43–1.12/kg-H2). Over the complete range of demand investigated, 10–350 tpd-H2, the levelized cost of H2 distributed to stations is aligned as methanol « ammonia ~ MCH. With pipelines at much larger scale, 6000 tpd-H2, the levelized cost decreases by ~1 $/kg-H2 for ammonia and MCH and much less for methanol. Methanol is a particularly attractive low-risk carrier in the transition phase with lower than 50-tpd H2 demand.  相似文献   
90.
A three-dimensional (3-D) transient numerical model of an alkaline water electrolysis (AWE) cell with potassium hydroxide solution is developed by rigorously accounting for the hydrogen and oxygen evolution reactions and resulting species and charge transport through various AWE components. First, the AWE model is experimentally validated against a polarization curve corresponding to a wide range of currents as high as 2.0 A·cm?2. In general, the simulation results compare well with the measured data and further reveal the operating characteristics of AWE cells, showing key distributions of solid/electrolyte potentials and multidimensional contours of reactant and product concentrations at various current densities. In particular, the contribution of hydroxide ion (OH?) diffusion to the ohmic losses through porous electrodes and a porous separator are quantitatively examined at low and high electrolyte flow rates. The present full 3-D AWE model provides a basic understanding of the electrochemical and transport phenomena and can be further applied to practical large-scale AWE cell and stack geometries for grid-scale hydrogen production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号